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A B S T R A C T

We study the structure of a stationary and axisymmetric charge-deficient region (or a

potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field

along the magnetic field lines is created in this potential gap and accelerates migratory

electrons (e2) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is

immersed in a dense soft photon field, these relativistic e^ radiate g -ray photons via inverse

Compton (IC) scattering. These g -rays, in turn, produce yet more radiating particles by

colliding with ambient soft photons, leading to a pair-production cascade in the gap. The

replenished charges partially screen the longitudinal electric field, which is self-consistently

solved together with the distribution of e^ and g -ray photons. It is demonstrated that the

voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as

luminous as 1037 erg s21. However, this value increases with decreasing X-ray luminosity

and attains 1012 V when the X-ray radiation is 1036 erg s21. In addition, we find useful

expressions of the spatial distribution of the particle fluxes and longitudinal electric field,

together with the relationship between the voltage drop and the current density. Amazingly,

these expressions are valid not only when IC scattering dominates but also when curvature

radiation dominates.

Key words: magnetic fields ± pulsars: general ± gamma-rays: theory.

1 I N T R O D U C T I O N

The study of pair plasma production in a pulsar outer magneto-

sphere is astrophysically interesting in the context of high-energy

emission from isolated spin-powered pulsars. If the magneto-

sphere is filled with a plasma so that the space charge density re is

equal to the Goldreich±Julian charge density [rGJ ; VBz=�2pc�
in the non-relativistic limit, Goldreich & Julian 1969], then the

field-aligned electric field vanishes by definition, where Bz is the

component of the magnetic field along the rotational axis.

However, the depletion of charge in the Goldreich & Julian

model in a region where it cannot be resupplied may cause a

vacuum region to develop. Holloway (1973) pointed out the

possibility that a region that lacks plasma is formed around the

surface on which the Goldreich±Julian density rGJ changes its sign.

Chen, Ho & Ruderman (1986a,b hereafter CHR) developed a

version of the outer magnetospheric g-ray emission zone in which

acceleration in the Holloway gaps brings the particles to large

Lorentz factors �, 107:5�. These primary particles produce high-

energy g-ray photons, some (or most) of which collide with soft

photons to materialize as secondary pairs. The resulting secondary

charges suffer strong synchrotron losses to emit secondary

radiation. The secondary photons, in turn, materialize as low-

energy tertiary pairs, which were argued to produce the soft

tertiary photon bath needed for the original gap closure.

However, few attempts have so far been made at the

construction of self-consistent electrodynamic structure for outer

gap models. For example, CHR assumed a uniform potential drop

so that the acceleration field was , Vgap=rLC, where Vgap is the

voltage drop in the gap and rLC is the light cylinder radius. For a

spinning neutron star with angular frequency V (rad s21), rLC is

given by

rLC � c

V
� 108:5V21

2 cm; �1�

where V2 ; V=102 rad s21, and c is the speed of light.

Subsequently, Romani (1996) assumed its functional form as

, r21 and computed g-ray pulse profiles, spectra, and so on. It was

Hirotani & Shibata (1998, hereafter Paper I) who first solved the

spatial distribution of Ek explicitly together with those of particles

(e^) and g-ray distribution functions, by solving the Poisson

equation and the Boltzmann equations of e^s and g-ray photons

self-consistently (see also Beskin, Istomin & Par'ev 1992; Hirotani
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& Okamoto 1998 for the same method applied for a black hole

magnetosphere). They considered an outer gap immersed in a

relatively low-luminosity background radiation field, in which

curvature radiation contributes to g-ray production.

In this paper, we extend the method proposed in Paper I to a

magnetosphere that is immersed in a luminous photon field in

which inverse Compton (IC) scatterings are the dominant process

for g-ray production (Fig. 1). In the next section, we present basic

equations describing the system. We then solve these equations in

Section 3 and reveal quantitative characteristics of the pair-

production cascade. In this paper, we assume an aligned rotator for

simplicity. Some authors, however, think that aligned rotators are

inactive with static electrosphere (Michel 1998), and this issue is

controversial. Nevertheless, the present model is generic in the

sense that what we consider is the dynamics around the null

surface when the current pierces through it; therefore, the result is

applicable to oblique rotators. This point will be discussed in

Section 4. In this final section, we also present empirical but

useful expressions of the spatial dependence of particle fluxes and

Ek, together with the relationship between the voltage drop and the

current density.

2 PA I R - P R O D U C T I O N C A S C A D E I N T H E

O U T E R G A P

We first reduce the Poisson equation into a one-dimensional form

in Section 2.1. Next, we introduce a model of the power-law

background radiation field in Section 2.2. We then present a one-

dimensional description of e^ and g-ray distribution functions in

Section 2.3, and impose suitable boundary conditions in Section 2.4.

2.1 Reduction of the Poisson equation

As discussed in section 5 of Paper I, transfield structure does not

play the primary role in the gap closure problem in the present

paper; this contrasts strikingly with CHR, in which the single-

signed curvature of field lines results in an exponential growth of

particle number densities in the transfield direction of a

geometrically thin gap. We therefore consider a one-dimensional

gap structure along the field lines for simplicity, neglecting all the

transfield dependence of quantities.

Suppose that the magnetic field lines are straight lines parallel

to the x-axis (see fig. 1 of Paper I). Here, x is an outwardly

increasing coordinate along a magnetic field line. Expanding

rGJ(x) around the null surface located at the origin, x � 0, we can

write the Poisson equation in the form

2
d2F

dx2
� 4p e�N� 2 N2�2

­rGJ

­x

� �
0

x

� �
; �2�

where N+ and N2 are the spatial number densities of e+ and e2,

respectively; e refers to the magnitude of the charge on the

electron. The subscript 0 indicates that the derivative is evaluated

at x � 0. (In Section 4, the neglect of transfield derivatives on the

left-hand side will be justified in accordance with the small

longitudinal gap width.)

As described in Paper I, it is convenient to non-dimensionalize

the length-scales by c/vp, where the plasma frequency vp is

defined by

vp �
����������������������
4pe2

me

VB

2pce

s
� 1:875 � 107V

1=2
2 B

1=2
5 rad s21; �3�

the magentic field is evaluated at the null surface such that

B5 ; B=105 G � 1:76m30V2, where m30 ; �m=1030 G cm3) is the

dimensionless dipole moment of an aligned rotator. Introducing

the dimensionless coordinate variable

j ;
vp

c
x � 6:25 � 1024V

1=2
2 B

1=2
5 x; �4�

we can simplify the Poisson equation (2) to the form

Ek � 2
dw

dj
�5�

and

dEk
dj
� n��j�2 n2�j�2 Aj; �6�

where the dimensionless electrostatic potential and electric field

are defined by

w�j� ;
eF�x�
mec2

; �7�

Ek ; 2
dw

dj
� e

mecvp

dF

dx
�8�

� 3:12 � 1025 dF=dx

V=m

� �
1�����������
V2B5

p ; �9�

and the particle densities are normalized in terms of the

Goldreich±Julian density,

n^�j� ;
2pce

VB
N^�x�; �10�

moreover, A is the dimensionless expansion coefficient of rGJ at

the null surface and can be estimated as (Paper I)

A ;
c

vp

2pc

VB

­rGJ

­x

� �
0

<
c

vpRc

� 1:1 � 1025V
1=2
2 B

21=2
5

Rc

0:5rLC

� �21

: �11�

2.2 Background radiation field

Let us briefly describe the background radiation field. We assume

that the spectral number density of background radiation per unit

energy interval mec2es , mec2�es � des� can be represented by a

single power law,

dNs

des

� C�a�e2a
s �emin , es , emax�; �12�

where C(a ) is a decreasing function of a and is defined by

C�a� ;
2 2 a

e22a
max 2 e22a

min

Us

mec2
; �13�

emax and emin are the cut-off energy of the spectrum. In what

follows, we shall adopt

emax � 10 keV=mec2 � 1:95 � 1022; �14�
emin � 0:1 eV=mec2 � 1:95 � 1025: �15�
Evaluating Us at the radius r � 0:67rLC, which is the intersection

of the null surface and the last open field line for an aligned
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rotator, we obtain

Us � Ls=�4p�0:67rLC�2c� � 6:0 � 107L36V
2
2 erg cm23; �16�

where L36 ; Ls=�1036 erg s21� is a dimensionless soft photon

luminosity. If we adopt a � 1:5, for instance, Ns and L36 are

related by

Ns � 1����������������
eminemax
p Us

mec2
� 3:75 � 1017L36V

2
2 cm23: �17�

For such a luminous backgroud radiation field, the radiation

reaction force resulting from inverse Compton (IC) scattering

dominates reaction forces from the curvature radiation and

synchrotron radiation (Appendix A).

The IC scattering limits the Lorentz factor of the e^ to the value

that satisfies

ejdF=dxj � mpcvpjEkj � sTUsf �G;a�G2; �18�
where f(G,a ) is the coefficient describing the strength of the

Compton drag on a single e+ or e2. The coefficient f would be

unity if all the soft photons were to be scattered in the Thomson

regime. However, it becomes much smaller than unity in practice,

especially for large Lorentz factors or for hard spectra of the target

photons (i.e. for small a ). We present the derivation of coefficient

f in Appendix B, and depict its dependence on G and a in Fig. 2.

The solid lines, which represent the three cases of a � 1:25, 1.5,

and 1.75 (from bottom to top), decline with increasing G roughly

linearly. On the other hand, the dotted line, which represents

f(G,3.0), stays at , 1 for small G �, 105�. This is because almost

all the photons are scattered in the Thomson regime. We use

equations (12), (13) and (16) to calculate the pair-production

redistribution function, hp, in the next subsection.

2.3 Particle and g -ray Boltzmann equations

The particles in the gap are accelerated by Ek and saturate at the

high Lorentz factor computed from equation (18). Therefore,

particle velocities are virtually ^c with vanishing pitch angles

(see Appendix A for details). This simplifies the continuity

equations of e^s significantly. Without loss of any generality, we

can assume that the electric field is positive in the gap, in which e+

(or e2) move outwards (or inwards). In rectilinear coordinates,

their continuity equations then become

�c
dN�
dx
�
�1

0

deg hp�eg��G��x; eg� � G2�x; eg��; �19�

2c
dN2

dx
�
�1

0

deghp�eg��G��x; eg� � G2�x; eg��; �20�

where G^(x,eg) are the distribution functions of g-ray photons

propagating in the ^x directions at g-ray energy mec
2eg ,

moreover, hp is the angle-averaged pair-production redistribution

function defined by (Berestetskii, Lifshitz & Pitaevskii 1989)

hp�eg� ;
csT

2

�1

21

dm

�emax

2=�12m�eg
des

dNs

des

1

lp�v� ; �21�

1

lp�v� ;
3

16
�1 2 v2� �3 2 v4� ln 1� v

1 2 v
2 2v�2 2 v2�

� �
; �22�

v�eg; es;m� ;

��������������������������������
1 2

2

1 2 m

1

eges

;

s
�23�

where m is the cosine of the colliding angle of the soft and the

hard photons.

Let us introduce a discrete form of g-ray densities with a

system of grids b i in eg space such that

gi
^�j� ;

2pce

VB

�bi

bi21

degG^�x; eg�: �24�

We are concerned here only with g-ray photons that can

materialize as pairs. Therefore, we set b0 � 1=emax, which

corresponds to the lowest g-ray energy, hn � b0mec2 �
26:2 MeV. To cover a wide range of g-ray energies, we divide

the g-ray spectra into 12 energy bins, that is b1 � 3:0=emax,

b2 � 1:0 � 101=emax, b3 � 3:0 � 101=emax, b4 � 1:0 � 102=emax,

b5 � 3:0 � 102=emax, b6 � 1:0 � 103=emax, b7� 3:0 � 103=emax,

b8� 1:0 � 104=emax, b9 � 3:0 � 104=emax, b10 � 1:0 � 105=emax,

b11 � 3:0 � 105=emax, b12 � 1:0 � 106=emax. As will be shown in

Section 3.2, most of the g-ray photons have energies less than

hn � b10mec2 � 2:62 TeV.

We can rewrite equations (19) and (20) in the dimensionless
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Figure 1. A side view of a hypothetical outer magnetospheric gap which is

immersed in a dense soft photon field, which enables g-ray production via

inverse Compton scattering.

Figure 2. log10 f(G) versus log10G. The solid lines represent the cases of

a � 1:25, 1.5 and 1.75 (from bottom to top), while dashed and dotted lines

correspond to a � 2:0 and 3.0, respectively.
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forms

dn�
dj
� �

X14

i�1

hi
p�gi
��j� � gi

2�j��; �25�

dn2

dj
� 2

X14

i�1

hi
p�gi
��j� � gi

2�j��; �26�

where hi
p are evaluated at the central energy in each bin and are

defined as

hi
p ;

1

vp

hp

bi21 � bi

2

� �
; �27�

n^�j� ; �2pce=VB�N^�x� is normalized with the same factor as

gi
^�j�.
A combination of equations (25) and (26) yields the current

conservation law,

j0 ; n��j� � n2�j�: �28�
When j0 � 1:0, the current density equals the Goldreich±Julian

current density, VB/(2p).

Let us next discuss the Boltzmann equations that the g-ray

distribution functions obey. In accordance with the one-dimen-

sional approximation, we can write the g-ray Boltzmann

equations in form

^c
­

­x
G^�x; eg� � 2hpG^�x; eg� � hICN^�x�; �29�

where h IC(eg ,G) is the Compton redistribution function, defined

by (see equation B1 and the explanation below)

hIC ; c

�emax

emin

des

dNs

des

sc�esG�d�eg 2 min�G2es;G��; �30�

sc�z� ;
3

4
sT

�
1� z

z3

2z�1� z�
1� 2z

2 ln �1� 2z�
� �

� ln �1� 2z�
2z

2
1� 3z

�1� 2z�2
�
: (31)

Integrating equation (29) in the energy intervals [mec
2b i21,

mec
2b i], we obtain

^
d

dj
gi
^�j� � 2hi

pgi
^�j� � hi

ICn^�j�; �32�

where i � 1; 2;¼;m and

hi
IC ;

1

vp

�bi

bi21

deghIC�eg;G� �33�

denotes the number of g-ray photons scattered by a single e+ or e2

in the normalization length-scale c/vp between dimensionless

energy intervals bi21 and b i.

2.4 Boundary conditions

To solve the differential equations (5), (6), (25), (26) and (32), we

must impose boundary conditions.

Let us first consider the conditions at the inner (starward)

boundary j � j1. In the same manner as we considered the

electrostatics in Paper I, we impose

Ek�j1� � 0 �34�
and

w�j1� � 0: �35�

We further hypothesize that neither g-ray photons nor particles

enter from the outside of the gap, that is

gi
��j1� � 0 �i � 1; 2;¼;m�; �36�

and

n��j1� � 0; �37�
which yields, with the help of the charge conservation law (28),

n2�j1� � j0: �38�
We next consider the conditions at the outer boundary (j � j2),

which is defined so that Ek vanishes again:

Ek�j2� � 0: �39�
In the same manner, at j � j1, we impose both

gi
2�j2� � 0 �i � 1; 2;¼;m� �40�

and

n2�j2� � 0: �41�
To sum up, we have 2m� 6 boundary conditions in total (34)±

(41) for 2m� 4 differential equations; thus two extra boundary

conditions must be compensated for by making the positions of

the boundaries, j � j1 and j2, free.

It follows from the basic equations (5), (6), (25), (26) and (32)

that the gap structure is described by the following four

parameters:

j0 ; n� � n2; �42�
hi

IC;h
i
p / L36V

3=2
2 B

21=2
5 ; �43�

Rc

c=vp

/ Rc

rLC

�����
B

V

r
�44�

and

a: �45�
The reader may notice here that equation (18) gives

jEkj / L36V
3=2
2 B

21=2
5 f �G;a�G2, which implies that G is related

to Ek through the second parameter alone. Moreover, even

though g-ray photons are produced via IC scatterings, the

curvature radius appears through the expansion coefficient A in

equation (11).

3 S T R U C T U R E O F T H E O U T E R G A P

In Sections 3.1 and 3.2, we investigate how the solutions

depend on the dimensionless current density, j0. We then

describe the dependence on the pair-production mean free

path, / 1=L36, in Section 3.3 and that on the photon index, a , in

Section 3.4.

3.1 Longitudinal electric field

To aid in grasping the basic features, we first show some examples

of the solutions of Ek(j ) for several values of the `first' parameter

j0 (see equation 42). In Fig. 3, the dotted, dashed and solid lines

correspond to j0 � 0:04588, 0.02 and 0.01, respectively. Other

parameters are fixed at V2 � 1:0, m30 � 1:0, L36 � 3:0 and

a � 1:5.

For very small j0, the charge density (n� 2 n2 term) in equation

(6) does not contribute. As a result, equation (6) gives
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approximately a quadratic solution, Ek�j� � Ek�0�2 �A=2�j2,

which is represented by the solid line in Fig. 3.

However, as j0 increases, Ek(j ) deviates from the quadratic

form to have a `brim' at the boundaries. Finally, at a certain value

j0 � jcr, the derivative of Ek vanishes at the boundaries. In the case

of V2 � 1:0, m30 � 1:0, L36 � 3:0, jcr equals 0.0433, for which

the solution is represented by the dotted line in Fig. 3. Above the

critical current density, jcr, there are no solutions satisfying the

2m� 6 boundary conditions presented in Section 2.5 (see fig. 2 of

Hirotani & Okamoto 1998).

It will also be useful to describe the Lorentz factor G(j ). The

results are presented in Fig. 4; the parameters are the same as we

have chosen in Fig. 3. It is plain from this figure that the Lorentz

factor does not exceed 106; therefore, the assumption that the g-

ray photons are primarily produced via inverse Compton

scatterings is self-consistently satisfied (see equation A4 and the

discussion below).

3.2 Particle and g -ray fluxes

Let us devote a little more space to examining n^(j ) and g^(j).

First, examples of n+ (thick curves) and n2 (thin curves) are drawn

in Fig. 5. Parameters are chosen to be the same as in Fig. 3. We

can easily see that particles distribute symmetrically with respect

to j � 0 in the sense that n��j� � n2�2j�. This is because the

small gap width �H ! rLC� prevents the appearance of two-

dimensional effects (or transfield structure) in the Poisson

equation (see the explanation in Section 4.1 of Paper I).

Secondly, examples of log10 g+ and log10 g2 are shown in Fig.

6. The thick curves denote the fluxes of g+, while the thin curves

denote those of g2. The g-ray distribution is also symmetric with

respect to j � 0. The solid lines correspond to the lowest energy

bin, 1=emax , eg , 102=emax, while the dashed and dash±dotted

lines correspond to 102=emax , eg , 103=emax, 103=emax , eg ,
104=emax � 5:11 � 105, respectively. Above the energy

5:11 � 105mec2, no g-ray photons are produced, because all the

e^ have energies less than this value, as indicated by the Lorentz

factors in Fig. 4. Current density is fixed at j0 � 0:01. We can also

see from Fig. 6 that each e+/e2 produces Ng ; g�=n� , 6 g-ray

photons via IC scattering.

3.3 Dependence on the soft photon luminosity

In this subsection, we are concerned with the dependence of the

solutions on the second parameter, hi
IC;h

i
p / Ls. In Fig. 7 we

present the solutions of Ek(j ). The dashed, solid and dotted lines

correspond to L36 � 10:0, 3.0 and 1.0, respectively. Other

parameters are fixed at a � 1:5, j0 � 0:01, V2 � 1:0, m30 � 1:0.

It is plain from Fig. 7 that the longitudinal electric field

increases with decreasing soft photon luminosity, Ls. This result is

deeply associated with the fact that H�; j2 2 j1� is a decreasing

function of Ls, because the quadratic solution Ek�j� � Ek�0�2
�A=2�j2 gives Ek�0� � AH2=8.

The results of H versus j0 and L36 are summarized in Fig. 8. The

dashed, solid and dotted lines correspond to the cases of

L36 � 10:0, 3.0 and 1.0, respectively. Other parameters are fixed

at a � 1:5, V2 � 1:0 and m30 � 1:0. This figure shows that H

increases with decreasing luminosity. Compared with Paper I, in

which g-ray photons are produced via curvature radiation, the

dependence of H on Ls, and hence Ek on Ls, is very strong. This is

because the soft photon luminosity affects pair production alone if

g -rays are produced via curvature process but it affects both pair

and g-ray production if they are produced via IC scattering.

The condition that the gap width should be much greater than

the IC mean free path is self-consistently satisfied for all of the

three cases. (If it were to break down, synchrotron radiation could

become important.) For example, gap width becomes , 0:035rLC

for L36 � 10:0, while lIC , 0:001rLC.

Integrating Ek along the field line from j � j1 to j2, we can

calculate the voltage drop, Vdrop, in the accelerator. The results are

q 1999 RAS, MNRAS 308, 67±76

Figure 3. Examples of longitudinal electric field Ek(x). The dotted, solid and dashed lines represent the solutions corresponding to j0 � 0:0433, 0.02 and 0.01

respectively. Other parameters are fixed at V2 � 1:0, m30 � 1:0 and L36 � 3:0 throughout the gap. x � 1:2 � 103j cm.
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summarized in Fig. 9. The solid line describes Vgap( j0) for

L36 � 3:0, while the dashed and dotted lines are for L36 � 10:0
and 1.0, respectively. Other parameters are fixed at a � 1:5, V2 �
1:0 and m30 � 1:0.

This figure indicates that the voltage drop in the gap increases

with decreasing L36. This conclusion is qualitatively consistent

with the results obtained in Paper I. However, in the current paper

the luminous X-ray field, which reduces the pair-production mean

free path and hence the gap width, leads to a small voltage drop in

the gap, compared with Paper I.

3.4 Dependence on the photon index

Let us finally investigate the relationship between the voltage drop

and the photon index, a . We summarize the result in Fig. 10. The

solid line corresponds to Vgap( j0) for a � 1:5, while the dashed

line is for a � 1:625. Other parameters are fixed at V2 � 1:0,

L36 � 3:0 and m30 � 1:0.

It is plain that Vdrop decreases with increasing a when Ls is

fixed. This is because the gap width, which essentially describes

the voltage drop, decreases with increasing number density of

q 1999 RAS, MNRAS 308, 67±76

Figure 4. Examples of the Lorentz factor G(j ). The solid, dashed and dotted lines correspond to the same parameters chosen in Fig. 3. x � 1:2 � 103j cm.

Figure 5. Examples of n+(j ) (thick curves) and n2(j ) (thin curves). The solid, dashed and dotted lines correspond to the same parameters chosen in Fig. 3.

x � 1:2 � 103j cm.
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target photons, or equivalently with decreasing mean free path for

pair production.

4 D I S C U S S I O N

In summary, we have developed a one-dimensional model for an

outer gap accelerator immersed in a luminous radiation field in

which e^s lose their perpendicular momentum soon after their

birth owing to inverse Compton (IC) scattering. As a result,

synchrotron radiation is not important in g-ray production. The

terminal Lorentz factor becomes �, 1±3� � 105, for which IC

scattering dominates curvature radiation in g -ray production. A e+

or e2 produces typically 10 g-ray photons that can materialize as

pairs. The pair-production mean free path, and hence gap width,

increases with decreasing background radiation field. What is

most important is that the voltage drop, Vgap, is only 0.01 per cent

of the available electromotive force produced on the spinning

q 1999 RAS, MNRAS 308, 67±76

Figure 6. Examples of log10 g+(j ) (thick curves) and log10 g2(j ) (thin curves). The solid lines correspond to the lowest energy bin, while the dashed, dash±

dotted and dotted lines correspond to higher energy bins (see text for details). x � 1:2 � 103j cm.

Figure 7. Longitudinal electric field Ek(x) in the case when j0 � 0:01, V2 � 1:0 and m30 � 1:0. The dashed, solid and dotted lines represent the solutions

corresponding to L36 � 10:0, 3.0 and 1.0, respectively. x � 1:2 � 103j cm.
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neutron star surface �, 1016 V� even for the low-luminosity case

of Ls � 1036 erg s21. The voltage drop decreases with increasing

Ls.

Even though we have assumed an axial symmetry, the

discussion and results are not tied to the case of an aligned

rotator. This is because the gap structure is described by the local

soft photon field, current density and local magnetic field, which

appears through the expansion coefficient of rGJ, A, in equation

(11). As the dense soft photon field is assumed to be isotropic,

collision angles and hence pair-production rate are independent of

the inclination between the rotational and magnetic axes. As a

result, the inclination affects the system through A alone, which is

well approximated by A < c=�vpRc� (equation 11) for a moderate

inclination. On these grounds, the essential properties demon-

strated in this paper are not tied to the aligned case.

We discuss the validity of the neglect of transfield dependence

in the Poisson equation. In CHR's model, a very small transfield

thickness was hypothesized to avoid g-ray penetration into the

gap. However, in the present model, the transfield thickness can be

reasonably large (. 0:1rLC, say), because the gap is maintained

when it is irradiated by g-ray photons. Therefore, the smallness of

the longitudinal width, as indicated by Fig. 8, justifies the neglect

of transfield derivatives in the Poisson equation.

Let us next discuss the approximate expressions for n^(j ),

Ek(j) and Vgap( j0). First, if we were to redraw Fig. 3 by

renormalizing the abscissa by b� j0� ; H� j0�=2 and the ordinate

by j0, we would find that the distributions of n+(j /b)/j0 and n2(j /

b)/j0 for the three cases almost coincide. As an approximate but

general expression, we find

n� <
j0

2

j

b� j0�
� 1 2 esin p

j

b� j0�
� �� �

; �46�

n2 <
j0
2

2
j

b� j0�
� 1� esin p

j

b� j0�
� �� �

; �47�

where the small coefficient e < 0:09 has little dependence on j0,

V2, B5 or L36. Amazingly, these approximate expressions are valid

not only when IC scattering dominates but also when curvature

radiation does. In other words, if we redrew Fig. 3 in Paper I on a

linear scale, we would find that expressions (46) and (47) are also

applicable.

Secondly, substituting expressions (46) and (47) into Poisson

equation (6), we obtain

Ek � j0 2 bA

2b� j0�
�j2 2 b2� � eb� j0�j0

p
1� cos p

j

b� j0�
� �� �

: �48�

For j0 � jcr � b� jcr�A, Ek varies sinusoidally with j as

Ek � eb� jcr�jcr

p
1� cos p

j

b� jcr�
� �� �

: �49�

Examples are presented by the dotted line in Fig. 3 of this paper

and in fig. 3 of Paper I. A slight deviation of the dotted lines from

the sinusoidal form represents the difference of the approximated

expressions (46) and (47) from the true profile.

Thirdly, integrating (48) over j from 2b to b, we obtain the

voltage drop in the gap. The result is

Vgap� j0� � 2
2

3
b2� j0� jcr 2 j0 �

3e

p
j0

� �
: �50�

The gap width, 2b( j0), is presented in Fig. 9. Substituting typical

values of b( j0) and e < 0:09 into equation (50), we can

approximately compute the voltage drop, Vgap. For very small

current densities j0 ! jcr, Vgap is kept constant at a value

jVgapj � Vmax � 2

3
b3� j0�A: �51�

We point out here that the gap width 2b( j0) is kept constant for
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Figure 8. Gap width (c/vp)H/rLC versus log10 j0. The solid line describes

the gap width for L36 � 3:0, while the dashed and dotted lines are for

L36 � 10:0 and 1.0, respectively. The filled circles indicate the points

where j0 coincides with jcr, above which no solutions exist.

Figure 9. log10 Vgap[V] versus log10 j0. The solid line describes Vgap(j0) for

L36 � 3:0, while the dashed and dotted lines are for L36 � 10:0 and 1.0,

respectively. The filled circles indicates the points where j0 coincides with

jcr, above which no solutions exist.

Figure 10. log10 Vgap[V] versus log10 j0. The solid line describes Vgap(j0)

for a � 1:5, while the dashed line is for a � 1:625. The filled circles

indicate the points where j0 coincides with jcr, above which no solutions

exist.
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small j0, as Fig. 8 indicates. On the other hand, at j0 � jcr, |Vgap|

becomes minimum at the value

jVgapj � Vmin � 3e

p
´
2

3
b3� jcr�A: �52�

It follows that the ratio becomes

Vmin

Vmax

� 3e

p
� b� jcr�

b� j0�
� �3

: �53�

Equations (46)±(53) hold not only when the IC scattering

dominates but also when the curvature radiation dominates.

Let us finally check the validity of equation (53). As an

example, we consider the case of L36 � 3:0 and a � 1:5. In this

case, the numerical values of the gap width become

2b� j0� � 7:12 � 103; 2b� jcr� � 1:06 � 104 �54�
in dimensionless units. Substituting these values into (53), we

obtain

Vmin

Vmax

< 0:28; �55�

where e < 0:09 is substituted. This value is roughly consistent

with the numerical value

Vmin

Vmax

� 3:82 � 1010 V

1:30 � 1011 V
� 0:293; �56�

which reinforces the validity of equations (46)±(48) and (50).
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A P P E N D I X A : R A D I AT I O N R E AC T I O N

F O R C E S

In this appendix, we show that IC scattering is the dominant
process in g -ray production. In the present paper, we consider a
luminous soft photon field such that Us . 107 erg cm23, which is
applicable for gamma-ray pulsars such as the Crab. For such a
luminous X-ray radiation field, the radiation reaction force
resulting from curvature radiation is negligibly small compared
with that resulting from inverse Compton (IC) scattering. To see
this, let us take the ratio of Pcurv/PIC, where Pcurv/c and PIC/c

denote the radiation reaction forces resulting from curvature
radiation and IC scattering, respectively. By estimating the typical
curvature radius of the magnetic field lines to be 0.5rLC, we obtain

Pcurv

c
� 8e2G4

3r2
LC

: �A1�

The radiation reaction force resulting from IC scattering is given
by

PIC

c
< cNssKN

Gmec2

c
. 50mec2NssT; �A2�

where sKN and sT are the Klein±Nishina and Thomson cross-
sections, respectively. The inequality comes from the fact that

sKN <
3

8

sT

Ges

�ln 2Ges � 0:5� <
sT

Ges

�A3�

when Ges @ 1. Combining the foregoing equations, we have

Pcurv

PIC

, 0:67
G

106

� �4

L21
36 : �A4�

Remembering that equation (A2) is the severest estimate for the
lower limit of PIC/c, we can see from equation (A4) that curvature
radiation processes are negligible compared with IC processes
unless G greatly exceeds 106.

Let us next show that synchrotron radiation is negligible in a
luminous soft photon field such as Us . 107 erg cm23. The IC
mean free path can be estimated as

lIC

rLC

� 1:33 � 1022L21
36 V

21
2 : �A5�

It follows that e^ lose their perpendicular momenta by IC
scattering before migrating a few per cent of rLC. However, their
longitudinal momenta will soon recover, owing to Ek acceleration,
with acceleration length

lacc

rLC

� Gmec2

ejdF=dxj
1

rLC

� 1:70 � 1023 G

106

� � jdF=dxj
108 V=m

� �21

V21
2 :

�A6�
As a result, after many scatterings, their pitch angles evolve to
such small values that synchrotron radiation is negligible.

It may worth noting that the acceleration length, lacc, which is
defined by equation (A6), is comparable with the gap width,
(c/vp)H, for L36 � 10:0 (Fig. 8). Therefore, the assumption of
mono-energetic distribution of particle energy is marginally
satisfied for L36 � 10:0. For less luminous cases �L36 , 10:0�,
their larger gap width, which leads to larger Ek and hence smaller
l acc, ensures the validity of the mono-energetic approximation,
because lacc ! �c=vp�H holds.

On these gounds, in the first-order approximation, we may
regard all the e^ as migrating with the same terminal Lorentz
factor calculated from equation (18).

A P P E N D I X B : E Q U I L I B R I U M L O R E N T Z

FAC T O R

We demonstrate the method of deriving the function f(G,a ), which
appears in equation (18) and is depicted in Fig. 2. The momentum
transfer from a single e+/e2 to a single photon in a scattering can
be approximated by

DP <
1

c
min�G2mec2es;Gmec2�: �B1�

For small G, the energy transfer will be proportional to G2 on
average, while for large G it saturates at the kinetic energy of the

q 1999 RAS, MNRAS 308, 67±76



76 K. Hirotani and S. Shibata

particle. Multiplying the collisional frequency in (B1), we can
evaluate the drag force resulting from IC scattering as

1

c
PIC �

�1=G

emin

des
dNs

des

sKNG
2mec2es �

�emax

1=G

des
dNs

des

sKNGmec2:

�B2�

We implicitly assumed here that G is not too large to satisfy
G2emin . G. In other words, equation (B2) is valid for
G , e21

min � 5:11 � 106. Substituting the expression for the
Klein±Nishina cross-section (equation 31), and equating PIC/c
with e|dF/dx|, we obtain the numerical results presented in Fig. 2.
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